Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Vaccine ; 41(3): 844-854, 2023 01 16.
Article in English | MEDLINE | ID: covidwho-2165924

ABSTRACT

BACKGROUND: The safety of COVID-19 vaccines plays an important role in addressing vaccine hesitancy. We conducted a large cohort study to evaluate the risk of non-COVID-19 mortality after COVID-19 vaccination while adjusting for confounders including individual-level demographics, clinical risk factors, health care utilization, and community-level socioeconomic risk factors. METHODS: The retrospective cohort study consisted of members from seven Vaccine Safety Datalink sites from December 14, 2020 through August 31, 2021. We conducted three separate analyses for each of the three COVID-19 vaccines used in the US. Crude non-COVID-19 mortality rates were reported by vaccine type, age, sex, and race/ethnicity. The counting process model for survival analyses was used to analyze non-COVID-19 mortality where a new observation period began when the vaccination status changed upon receipt of the first dose and the second dose. We used calendar time as the basic time scale in survival analyses to implicitly adjust for season and other temporal trend factors. A propensity score approach was used to adjust for the potential imbalance in confounders between the vaccinated and comparison groups. RESULTS: For each vaccine type and across age, sex, and race/ethnicity groups, crude non-COVID-19 mortality rates among COVID-19 vaccinees were lower than those among comparators. After adjusting for confounders with the propensity score approach, the adjusted hazard ratios (aHRs) were 0.46 (95% confidence interval [CI], 0.44-0.49) after dose 1 and 0.48 (95% CI, 0.46-0.50) after dose 2 of the BNT162b2 vaccine, 0.41 (95% CI, 0.39-0.44) after dose 1 and 0.38 (95% CI, 0.37-0.40) after dose 2 of the mRNA-1273 vaccine, and 0.55 (95% CI, 0.51-0.59) after receipt of Ad26.COV2.S. CONCLUSION: While residual confounding bias remained after adjusting for several individual-level and community-level risk factors, no increased risk was found for non-COVID-19 mortality among recipients of three COVID-19 vaccines used in the US.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19 Vaccines/adverse effects , 2019-nCoV Vaccine mRNA-1273 , Ad26COVS1 , BNT162 Vaccine , Cohort Studies , Retrospective Studies , COVID-19/prevention & control , Vaccination/adverse effects
2.
Vaccine ; 40(23): 3150-3158, 2022 05 20.
Article in English | MEDLINE | ID: covidwho-1796041

ABSTRACT

BACKGROUND: The COVID-19 pandemic caused an abrupt drop in in-person health care (inpatient, Emergency Department, outpatient) and an increase in telehealth care, which poses challenges in vaccine safety studies that identify outcomes from in-person encounters. We examined the changes in incidence rates of selected encounter-based outcomes during the COVID-19 pandemic. METHODS: We assembled a cohort of members from 8 Vaccine Safety Datalink sites from January 1, 2017 through December 31, 2020. Using ICD-10 diagnosis codes or laboratory criteria, we identified 21 incident outcomes in traditional in-person settings and all settings. We defined 4 periods in 2020: January-February (pre-pandemic), April-June (early pandemic), July-September (middle pandemic), and October-December (late pandemic). We defined four corresponding periods in each year during 2017-2019. We calculated incidence rates, conducted difference in difference (DiD) analyses, and reported ratios of incidence rate ratios (RRR) to examine changes in rates from pre-pandemic to early, middle, and late pandemic in 2020, after adjusting for changes across similar periods in 2017-2019. RESULTS: Among > 10 million members, regardless of setting and after adjusting for changes during 2017-2019, we found that incidence rates of acute disseminated encephalomyelitis, encephalitis/myelitis/encephalomyelitis/meningoencephalitis, and thrombotic thrombocytopenic purpura did not significantly change from the pre-pandemic to early, middle or late pandemic periods (p-values ≥ 0.05). Incidence rates decreased from the pre-pandemic to early pandemic period during 2020 for acute myocardial infarction, anaphylaxis, appendicitis, Bell's palsy, convulsions/seizures, Guillain-Barré syndrome, immune thrombocytopenia (ITP), narcolepsy/cataplexy, hemorrhagic stroke, ischemic stroke, and venous thromboembolism (p-values < 0.05). Incidence rates of Bell's palsy, ITP, and narcolepsy/cataplexy were higher in all settings than in traditional in-person settings during the three pandemic periods (p-values < 0.05). CONCLUSION: Rates of some clinical outcomes during the pandemic changed and should not be used as historical background rates in vaccine safety studies. Inclusion of telehealth visits should be considered for vaccine studies involving Bell's palsy, ITP, and narcolepsy/cataplexy.


Subject(s)
Bell Palsy , COVID-19 , Cataplexy , Narcolepsy , Thrombocytopenia , Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Cataplexy/complications , Cataplexy/epidemiology , Humans , Incidence , Pandemics/prevention & control
3.
MMWR Morb Mortal Wkly Rep ; 70(43): 1520-1524, 2021 Oct 29.
Article in English | MEDLINE | ID: covidwho-1498054

ABSTRACT

By September 21, 2021, an estimated 182 million persons in the United States were fully vaccinated against COVID-19.* Clinical trials indicate that Pfizer-BioNTech (BNT162b2), Moderna (mRNA-1273), and Janssen (Johnson & Johnson; Ad.26.COV2.S) vaccines are effective and generally well tolerated (1-3). However, daily vaccination rates have declined approximately 78% since April 13, 2021†; vaccine safety concerns have contributed to vaccine hesitancy (4). A cohort study of 19,625 nursing home residents found that those who received an mRNA vaccine (Pfizer-BioNTech or Moderna) had lower all-cause mortality than did unvaccinated residents (5), but no studies comparing mortality rates within the general population of vaccinated and unvaccinated persons have been conducted. To assess mortality not associated with COVID-19 (non-COVID-19 mortality) after COVID-19 vaccination in a general population setting, a cohort study was conducted during December 2020-July 2021 among approximately 11 million persons enrolled in seven Vaccine Safety Datalink (VSD) sites.§ After standardizing mortality rates by age and sex, this study found that COVID-19 vaccine recipients had lower non-COVID-19 mortality than did unvaccinated persons. After adjusting for demographic characteristics and VSD site, this study found that adjusted relative risk (aRR) of non-COVID-19 mortality for the Pfizer-BioNTech vaccine was 0.41 (95% confidence interval [CI] = 0.38-0.44) after dose 1 and 0.34 (95% CI = 0.33-0.36) after dose 2. The aRRs of non-COVID-19 mortality for the Moderna vaccine were 0.34 (95% CI = 0.32-0.37) after dose 1 and 0.31 (95% CI = 0.30-0.33) after dose 2. The aRR after receipt of the Janssen vaccine was 0.54 (95% CI = 0.49-0.59). There is no increased risk for mortality among COVID-19 vaccine recipients. This finding reinforces the safety profile of currently approved COVID-19 vaccines in the United States.


Subject(s)
COVID-19 Vaccines/administration & dosage , Mortality/trends , Vaccination/statistics & numerical data , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/prevention & control , Child , Delivery of Health Care, Integrated , Female , Humans , Male , Middle Aged , Risk , United States/epidemiology , Young Adult
4.
MMWR Morb Mortal Wkly Rep ; 69(38): 1355-1359, 2020 Sep 23.
Article in English | MEDLINE | ID: covidwho-1389855

ABSTRACT

Pregnant women might be at increased risk for severe coronavirus disease 2019 (COVID-19), possibly related to changes in their immune system and respiratory physiology* (1). Further, adverse birth outcomes, such as preterm delivery and stillbirth, might be more common among pregnant women infected with SARS-CoV-2, the virus that causes COVID-19 (2,3). Information about SARS-CoV-2 infection during pregnancy is rapidly growing; however, data on reasons for hospital admission, pregnancy-specific characteristics, and birth outcomes among pregnant women hospitalized with SARS-CoV-2 infections are limited. During March 1-May 30, 2020, as part of Vaccine Safety Datalink (VSD)† surveillance of COVID-19 hospitalizations, 105 hospitalized pregnant women with SARS-CoV-2 infection were identified, including 62 (59%) hospitalized for obstetric reasons (i.e., labor and delivery or another pregnancy-related indication) and 43 (41%) hospitalized for COVID-19 illness without an obstetric reason. Overall, 50 (81%) of 62 pregnant women with SARS-CoV-2 infection who were admitted for obstetric reasons were asymptomatic. Among 43 pregnant women hospitalized for COVID-19, 13 (30%) required intensive care unit (ICU) admission, six (14%) required mechanical ventilation, and one died from COVID-19. Prepregnancy obesity was more common (44%) among pregnant women hospitalized for COVID-19 than that among asymptomatic pregnant women hospitalized for obstetric reasons (31%). Likewise, the rate of gestational diabetes (26%) among pregnant women hospitalized for COVID-19 was higher than it was among women hospitalized for obstetric reasons (8%). Preterm delivery occurred in 15% of pregnancies among 93 women who delivered, and stillbirths (fetal death at ≥20 weeks' gestation) occurred in 3%. Antenatal counseling emphasizing preventive measures (e.g., use of masks, frequent hand washing, and social distancing) might help prevent COVID-19 among pregnant women,§ especially those with prepregnancy obesity and gestational diabetes, which might reduce adverse pregnancy outcomes.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Hospitalization/statistics & numerical data , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , Pregnancy Complications, Infectious/therapy , Pregnancy Complications, Infectious/virology , Adolescent , Adult , COVID-19 , Coronavirus Infections/epidemiology , Female , Health Facilities/statistics & numerical data , Humans , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Pregnancy , Pregnancy Complications, Infectious/epidemiology , Risk Assessment , Risk Factors , United States/epidemiology , Young Adult
5.
J Med Internet Res ; 23(9): e29959, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1381351

ABSTRACT

BACKGROUND: Dramatic decreases in outpatient visits and sudden increases in telehealth visits were observed during the COVID-19 pandemic, but it was unclear whether these changes differed by patient demographics and socioeconomic status. OBJECTIVE: This study aimed to assess the impact of the pandemic on in-person outpatient and telehealth visits (telephone and video) by demographic characteristics and household income in a diverse population. METHODS: We calculated weekly rates of outpatient and telehealth visits by age, sex, race/ethnicity, and neighborhood-level median household income among members of Kaiser Permanente Southern California (KPSC) from January 5, 2020, to October 31, 2020, and the corresponding period in 2019. We estimated the percentage change in visit rates during the early pandemic period (March 22 to April 25, 2020) and the late pandemic period (October 4 to October 31, 2020) from the prepandemic period (January 5 to March 7, 2020) in Poisson regression models for each subgroup while adjusting for seasonality using 2019 data. We examined if the changes in visit rates differed by subgroups statistically by comparing their 95% CIs. RESULTS: Among 4.56 million KPSC members enrolled in January 2020, 15.0% (n=682,947) were ≥65 years old, 51.5% (n=2,345,020) were female, 39.4% (n=1,795,994) were Hispanic, and 7.7% (n=350,721) lived in an area of median household income

Subject(s)
COVID-19 , Telemedicine , Aged , Delivery of Health Care , Female , Humans , Outpatients , Pandemics , Retrospective Studies , SARS-CoV-2
6.
J Med Internet Res ; 23(4): e26558, 2021 04 29.
Article in English | MEDLINE | ID: covidwho-1232508

ABSTRACT

BACKGROUND: The COVID-19 pandemic has caused an abrupt reduction in the use of in-person health care, accompanied by a corresponding surge in the use of telehealth services. However, the extent and nature of changes in health care utilization during the pandemic may differ by care setting. Knowledge of the impact of the pandemic on health care utilization is important to health care organizations and policy makers. OBJECTIVE: The aims of this study are (1) to evaluate changes in in-person health care utilization and telehealth visits during the COVID-19 pandemic and (2) to assess the difference in changes in health care utilization between the pandemic year 2020 and the prepandemic year 2019. METHODS: We retrospectively assembled a cohort consisting of members of a large integrated health care organization, who were enrolled between January 6 and November 2, 2019 (prepandemic year), and between January 5 and October 31, 2020 (pandemic year). The rates of visits were calculated weekly for four settings: inpatient, emergency department (ED), outpatient, and telehealth. Using Poisson models, we assessed the impact of the pandemic on health care utilization during the early days of the pandemic and conducted difference-in-deference (DID) analyses to measure the changes in health care utilization, adjusting for the trend of health care utilization in the prepandemic year. RESULTS: In the early days of the pandemic, we observed significant reductions in inpatient, ED, and outpatient utilization (by 30.2%, 37.0%, and 80.9%, respectively). By contrast, there was a 4-fold increase in telehealth visits between weeks 8 (February 23) and 12 (March 22) in 2020. DID analyses revealed that after adjusting for prepandemic secular trends, the reductions in inpatient, ED, and outpatient visit rates in the early days of the pandemic were 1.6, 8.9, and 367.2 visits per 100 person-years (P<.001), respectively, while the increase in telehealth visits was 272.9 visits per 100 person-years (P<.001). Further analyses suggested that the increase in telehealth visits offset the reduction in outpatient visits by week 26 (June 28, 2020). CONCLUSIONS: In-person health care utilization decreased drastically during the early period of the pandemic, but there was a corresponding increase in telehealth visits during the same period. By end-June 2020, the combined outpatient and telehealth visits had recovered to prepandemic levels.


Subject(s)
COVID-19/epidemiology , Delivery of Health Care, Integrated/statistics & numerical data , Emergency Service, Hospital/statistics & numerical data , Inpatients/statistics & numerical data , Outpatients/statistics & numerical data , Pandemics , Patient Acceptance of Health Care/statistics & numerical data , Telemedicine/statistics & numerical data , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Young Adult
7.
J Med Internet Res ; 23(5): e30101, 2021 May 05.
Article in English | MEDLINE | ID: covidwho-1217031

ABSTRACT

[This corrects the article DOI: 10.2196/26558.].

SELECTION OF CITATIONS
SEARCH DETAIL